SummaryViruses often encode proteins that mimic host proteins in order to facilitate infection. Little work has been done to understand the potential mimicry of the SARS-CoV-2, SARS-CoV, and MERS-CoV spike proteins, particularly the receptor-binding motifs, which could be important in determining tropism of the virus. Here, we use structural bioinformatics software to characterize potential mimicry of the three coronavirus spike protein receptor-binding motifs. We utilize sequence-independent alignment tools to compare structurally known or predicted three-dimensional protein models with the receptor-binding motifs and verify potential mimicry with protein docking simulations. Both human and non-human proteins were found to be similar to all three receptor-binding motifs. Similarity to human proteins may reveal which pathways the spike protein is co-opting, while analogous non-human proteins may indicate shared host interaction partners and overlapping antibody cross-reactivity. These findings can help guide experimental efforts to further understand potential interactions between human and coronavirus proteins.HighlightsPotential coronavirus spike protein mimicry revealed by structural comparisonHuman and non-human protein potential interactions with virus identifiedPredicted structural mimicry corroborated by protein-protein dockingEpitope-based alignments may help guide vaccine effortsGraphical abstract