Objectives: to evaluate the influence of low-dose cone beam computed tomography (LD-CBCT) and metal artifact reduction (MAR) tool on the assessment of peri-implant dehiscence and fenestration. Methodology: Thirty titanium implants were inserted into bovine rib blocks. Twenty had standardized bone defects (10 with dehiscence and 10 with fenestration), while the remaining 10 were used as control group with no defects. Radiographic examinations held with high‐definition CBCT(HD-CBCT) and LD-CBCT with and without application of MAR tool. Images were assessed by four examiners for the presence or absence of peri-implant defects. The area under the area under the receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity, and accuracy were calculated for all radiographic protocols.Results: Results: In the absence of MAR tool, there was no difference in AUC and diagnostic values between LD-CBCT and HD-CBCT for detection of both defects. When the MAR tool was applied, the AUC values, sensitivity, and accuracy were higher in HD-CBCT than in LD-CBCT for the detection of both defects, especially for the dehiscence, while specificity remained the same.Conclusion: LD-CBCT can be used in the evaluation of peri-implant dehiscence and fenestration without any decrease in diagnostic accuracy. The application of MAR tool decrease the diagnostic ability of both defects, especially for the detection of dehiscence defects.Clinical relevance: low-dose protocols of CBCT devices can be performed to assess the peri-implant defects with a significant decrease in patient radiation dose. MAR algorithm is not recommended for use in the evaluation of peri-implant defects.