Growth in the agricultural and industrial sectors has increased the demand for rare earth elements (REEs) in the production of technological devices and fertilizers. Thus, the accumulation of these elements in the soil has become an environmental concern. Here, we aim to determine the natural contents of REEs in soils derived from different parent materials and under climatic conditions ranging from humid to semi-arid. We then evaluate the influence of major elements and soil properties on the geochemistry of REEs. The contents of REEs were determined using inductively coupled plasma optical emission spectroscopy. Major elements were determined by X-ray fluorescence spectrometry. The mean content of REEs in soils from Rio Grande do Norte (RN), Brazil, were in the followed order (mg kg -1 ): Ce (40.4) > La (18.9) > Nd (15.8) > Pr (7.3) > Sm (3.0) > Gd (2.6) > Dy (1.0) > Er (0.7) > Yb (0.6) > Eu (0.5) = Tb (0.5) > Ho (0.3) > Lu (0.2). The parent material was the main factor that governed the geochemistry of the REEs in soils of RN. Higher levels of REEs were observed in soils derived from igneous and metamorphic rocks. In contrast, sedimentary rocks -except for the region formed from limestone -generated soils with lower contents of REEs in the state. In addition, soils developed from the same parent material and under different climatic conditions showed the same geochemical signatures for REEs in soils. These results confirm the small effect of climate on REE geochemistry in soils of RN and lead to the conclusion that the geochemical signature of REEs in these soils reflects the composition of the underlying parent material. The lack of significant correlation between (La/Yb) N ratio and the Chemical Alteration Index also confirms the low influence of climate on soil REE geochemistry. Among the major elements, Fe and Si had a greater influence on soil REE geochemistry. Higher REEs were seen in areas with more Fe and less Si. These REE levels were clearly controlled by the type of parent material. The Nd, Sm, Tb, Dy, Ho, Yb, and Er levels showed strong spatial dependence; this dependence was moderate for the Pr, La, Ce, Eu, Gd, and Lu levels. Spatial variability maps of REEs are particularly important to identify areas under environmental impact. Our results represent the most detailed study of the surface geochemistry of REEs in Brazilian soils and contribute to the scarce data available on these elements in Brazil.