Abstract. We present a proposal for a single-parametric electron pump composed of a quantum dot between two unbiased leads with energy-gapped electron density of states (DOS). The model tight-binding Hamiltonian and the evolution operator technique are used in the calculations. The quantum dot is driven by the external harmonic field which leads to the pumping current flowing from the left or right electrode depending on the system parameters. We show that the net pumping current appears in the system if (i) there are at least two sideband states: one of them lying below and the second lying above the Fermi energy; (ii) the left and right lead DOS in the vicinity of these sideband states are different. Moreover, the energy-gapped structure of DOS is visible on the average quantum dot charge and the pumped current curves as well as on the transconductance characteristics. Thus mono-parametric pumping provides useful information about the system parameters, in particular about the lead DOS structure.