The single-crystal superalloy materials have been rapidly developed and widely used in advanced thermal structural components due to their excellent comprehensive physical and chemical properties under high-temperature service conditions. However, conventional micro-hole making results in defects such as edge breakage and burr. In this study, the electrical discharge drilling (EDD) combined with helical microelectrode is first adopted to fabricate DD5 single-crystal nickel-based superalloy. The effects of tool geometry and machining parameters on subsurface damage layer, micro-hole taper, surface morphology, surface roughness and machining time were investigated in detail. Experimental results indicated that helical microelectrode can obtained smoother surface without debris deposition and thinner subsurface damage layer depth lack of micro-cracks compared with cylindrical microelectrodes. Additionally, the computational fluid dynamics model was developed to analyze working fluid movement and reveal effective debris removal mechanism of helical microelectrode. The vortices will be generated in lateral gap fluid between micro-hole and helical microelectrode and have a certain delay time. The surface roughness and dimensional precision of micro-holes fabricated by helical micro-electrodes are greatly improved and machining efficiency is also improved by 30.94% compared to cylindrical microelectrodes. This work could provide theoretical and process guidance to assist in realizing high surface quality and low subsurface damage of micro-holes obtained with EDD process.