The aggregation behavior and flow characteristics of systems based on zwitterionic surfactant, erucyl amidopropyl betaine, silica and alumina nanoparticles in a wide range of surfactant concentrations from molecular to micellar solutions were studied using surface tensiometry, conductometry, dynamic and electrophoretic light scattering, and rheology techniques. The adsorption of zwitterionic surfactant molecules occurs on both positively and negatively charged surfaces via an electrostatic interaction mechanism. As a result, addition of a small amount silica nanoparticles (0.5-0.8 wt%) increases the surfactant solution's viscosity by more than two times.