This study focuses on short-term thermal degradation of polymer matrix composites by one-sided impact of improvised incendiary devices (IID). Specimens of two commercial composites HexPly® 8552/IM7 and M18-1/G939 with various thicknesses (1–8 mm) are systematically investigated as well as sandwich structures thereof, applying various amounts of fire accelerant predominantly in laboratory scale fire tests. Results of preceding large-scale fire tests with IIDs justify the chosen conditions for the laboratory-scale fire tests. The aim is to correlate the amount of fire accelerant with heat damage and residual mechanical strength. Thermal damage is characterized visually and by ultrasonic testing, infrared spectroscopy, and residual interlaminar shear strength. Matrix degradation and combustion only contribute to the overall amount of released heat by the fire accelerant for thin and especially vertically aligned panels as tested by a cone calorimeter (without electrical heating), but not for horizontally orientated and thicker panels. Degradation processes are discussed in detail. Protective effects are observed for typical coatings, a copper mesh applied for protection against lightning strike, combinations thereof as well as an intumescent coating. Especially sandwich structures are prone to severe damage by assaults with IID, such as Molotov cocktails.