This study introduces an innovative version of a recently studied converter. A Double Dual Ćuk Converter was recently studied with advantages like the possibility of designing it for achieving a low-input current ripple. The proposed converter, called the Improved Double Dual Ćuk Converter, maintains the advantages of the former one, and it is characterized by requiring one less capacitor and inductor than its predecessor. This allows addressing the challenge of optimizing the topology to reduce component count without compromising the operation; this work proposes an efficient design methodology based on theoretical analysis and experimental validation. Results demonstrate that the improved topology not only retains the advantages of the previous version, including high efficiency and robustness, but also enhances power density by reducing the number of components. These advancements open new possibilities for applications requiring compact and efficient power converters, such as renewable energy systems, electric vehicles, and portable power supply systems. This work underscores the importance of continuous innovation in power converter design and lays the groundwork for future research aimed at optimizing converter topologies. A detailed discussion of the operating principles and modeling of the converter is provided. Furthermore, simulation outcomes highlighting differences in steady-state duration, output voltage, input current ripple, and operational efficiency are shared. The results from an experimental test bench are also presented to corroborate the efficacy of the improved converter.