In the context of sustainable building development, Compressed Earth Blocks (CEBs) have garnered increasing attention in recent years owing to their minimal environmental and economic impact. However, owing to the inherent diversity of raw soil and the production process’s reliance on expertise, the properties of these blocks are subjected to multifaceted influences. Among these, the significance of soil particle size variation often remains overlooked, leaving its impact ambiguous. This study endeavours to address this gap in existing research by delving into this aspect. Two distinct batches of CEBs were produced by adjusting the grain size curve of a single type of sieved soil with different maximum mesh openings: 2 mm for R1 CEBs and 12.5 mm for R2 CEBs. Experimental results reveal significant differences in thermophysical characteristics: on average, R1 blocks show superior thermal performance, boasting a 23% reduction in thermal conductivity compared to R2 blocks, and are lighter, with an 8% decrease in dry bulk density. Although no significant changes in mechanical parameters were observed, finer-structured R1 blocks showed a 25% greater tendency to absorb water due to changes in their porous structure. This study sheds light on the sensitivity of thermal parameters to changes in soil particle size and shows that blocks with finer particles exhibit poorer heat conduction and heat diffusion. Besides providing new insights into the literature, this research also provides a strategic approach to optimise the thermophysical properties of CEBs. By understanding the influence of particle size, researchers and practitioners can now develop strategies to enhance these properties and improve the overall performance of CEBs.