CoCrFeNiMn high-entropy alloy coatings were deposited on compacted graphite iron (CGI) by plasma transfer arc cladding to strengthen and improve the wear resistance (performance) of the surface. The effects of different heat treatment processes on the microstructure and mechanical properties of the CoCrFeNiMn coatings were investigated. Compared with the deposited coating, the single FCC phase in the heat-treated coatings was retained, the grain size of the columnar dendrites decreased, the spacing between the dendrites increased, and the Cr-rich precipitated phase in the grain boundary increased. The heat treatment process had a positive influence on the microhardness and wear resistance of the coatings. The microhardness of the coatings increased after heat treatment. After heat treatment at 660 °C for 90 min, the coating had the highest microhardness of 563 ± 6.9 HV0.2, and it had the best wear resistance.