Nowadays, the distributed fiber Raman amplifier (FRA) has become more and more popular in long-haul fiber systems, owing to its lower noise figures and weaker nonlinear effects in the link. The critical issue in distributed FRAs is the presence of various kinds of noises and their interactions with the signal. However, the existing Raman channel models and their numerical solving methods can only partially describe how the randomly distributed noises interact with the signal. This causes the difficulties in analyzing the distributed FRA precisely and the inconveniences for the applications and the maintenance of FRA systems. In this paper, we propose a modified Raman channel model to describe more comprehensively the interactions between the distributed noises and the signal under the influence of loss, distributed gain, dispersion, and nonlinear effects in the distributed FRA systems. With the comparisons of the error–vector magnitude (EVM) curves, our model can get lower errors in the experimental results regarding bidirectional pumped FRA single-span fiber systems and multi-span systems with backward-pumped FRAs.