In this study, we determine experimentally the effect of inherent and stress-induced anisotropy on stiffness components, elastic moduli, and Biot's pore-pressure coefficients (PPCs) for Lyons outcrop Colorado sandstone, which exhibits a clear transverse isotropic rock structure. Both dynamic and quasistatic methods were used under a nonhydrostatic state of stress to perform the measurements on dry core samples. Our assumption of apparent transverse anisotropy was confirmed initially with acoustic velocity measurements and at a later stage in the loading with experimental transverse anisotropic failure analysis. The objective of this study is to identify and isolate the effect of stress-induced anisotropy from the inherent transverse anisotropy on the measured stiffness components, elastic moduli, and Biot's PPCs. The effect of stress-induced anisotropy appears to have significant control on measured stiffness components, elastic moduli, and Biot's PPCs in comparison to the inherent-transverse-anisotropy effect. Our work shows that the stiffness components, M ij , and thus the computed elastic moduli, are highly influenced by the stress-induced anisotropy, especially the off-diagonal stiffness components, M 12 and M 13 , where the increase in their magnitudes from the dynamic measurements before failure is determined to be 100 and 81%, respectively. The difference in the magnitude between the axial and lateral Biot's PPCs in line with bedding planes and perpendicular to them is measured to be 24 and 16% from the quasistatic and dynamic methods, respectively; whereas, the effect of stressinduced anisotropy reduced the dynamic average magnitude of the Biot's PPCs along the bedding planes and transverse to these planes by 63% across a stress range of 145 MPa.