Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This article aims to provide a comprehensive review of the use of logging residues in manufacturing briquettes, and to demonstrate their potential as a renewable energy source. Technical aspects of briquetting are examined, including wood properties, particle size, moisture content, and process temperature. Forest residues, such as branches and treetops, have a high energy potential with calorific values reaching up to 20 MJ∙kg−1 after briquetting. Densifying these residues increases their energy density (achieving up to 1120 kg∙m−3) and reduces waste and greenhouse gas emissions. Briquetting processes were analyzed economically and environmentally, with studies showing that production costs can be reduced by 25% when using locally sourced residues. This review recommends optimizing production processes to improve briquette durability and quality. Future research directions focused on developing cost-effective briquetting technologies tailored for small- and medium-sized businesses are identified in the study. Rural and economically disadvantaged regions could benefit from these advancements in briquetting. This paper advocates improved collaboration with international organizations to standardize briquette quality, promoting market acceptance and trade. Technology such as briquetting has the potential to advance renewable energy systems and achieve global climate goals.
This article aims to provide a comprehensive review of the use of logging residues in manufacturing briquettes, and to demonstrate their potential as a renewable energy source. Technical aspects of briquetting are examined, including wood properties, particle size, moisture content, and process temperature. Forest residues, such as branches and treetops, have a high energy potential with calorific values reaching up to 20 MJ∙kg−1 after briquetting. Densifying these residues increases their energy density (achieving up to 1120 kg∙m−3) and reduces waste and greenhouse gas emissions. Briquetting processes were analyzed economically and environmentally, with studies showing that production costs can be reduced by 25% when using locally sourced residues. This review recommends optimizing production processes to improve briquette durability and quality. Future research directions focused on developing cost-effective briquetting technologies tailored for small- and medium-sized businesses are identified in the study. Rural and economically disadvantaged regions could benefit from these advancements in briquetting. This paper advocates improved collaboration with international organizations to standardize briquette quality, promoting market acceptance and trade. Technology such as briquetting has the potential to advance renewable energy systems and achieve global climate goals.
The paper presents research on the process of densifying rye-wheat straw for its use in producing mouldable biofuel. The straw used in the research is a waste material from a farm located in Wielkopolska, resulting from the cultivation of triticale for the purpose of producing feed for pig farming. The aim of the study is to determine the utilisation of this material for the production of an agglomerate for energy purposes, such as heating the farm’s infrastructure. The research was conducted for two moisture levels of straw: M = 10% and 30%. Before the experiment, the straw was cut into particles of the desired size: S = 10, 20, 30, 40, 50 and 60 mm. The densification process was carried out at temperatures T = 25, 50, 100, 150 and 200 °C, subjecting the straw to a compaction pressure of 15 MPa. Based on experimental studies, two values of the densification degree were determined: x1—the densification degree under load; and x2—the densification degree after unloading. The densification degree x2 is more relevant from the perspective of storage and transport. ANOVA analysis of the results showed that the most significant factors affecting x1 were particle size S and process temperature T, with higher x1 values obtained for straw moisture of 30%. The ANOVA analysis of the densification degree after unloading (x2) revealed that higher x2 values were achieved for straw with 10% moisture and the smallest particle size of 10 mm. The most significant factors affecting x2 were particle size and moisture content. Studies of the friction coefficient between the straw and the materials of the densification equipment components indicated that the optimal process temperature is 150 °C. The conducted research and the obtained results determined the optimal input parameters for the process and also provided a solid support for further studies, including investigation of the influence of other factors, such as binders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.