Abstract:In order to study hemodynamic changes involved in muscular metabolism by means of time domain fNIRS, we need to discriminate in the measured signal contributions coming from different depths. Muscles are, in fact, typically located under other tissues, e.g. skin and fat. In this paper, we study the possibility to exploit a previously proposed method for analyzing time-resolved fNIRS measurements in a two-layer structure with a thin superficial layer. This method is based on the calculation of the timedependent mean partial pathlengths. We validated it by simulating venous and arterial arm cuff occlusions and then applied it on in vivo measurements.
©2016 Optical Society of America