This study aimed to develop an alternative surface hardening technique for low-carbon steel alloy type 20Ch using plasma electrolytic oxidation (PEO). The surface hardening of 20Ch alloy steel samples was achieved through PEO in a Na2CO3 electrolyte solution. Optimal processing parameters were determined experimentally by measuring voltage and applied current. Quenching was performed in the electrolyte stream, and plasma was ionised through excitation. A mathematical model based on thermal conductivity equations and regression analysis was developed to relate the key parameters of the hardening process. The results from both the experimental and mathematical models demonstrated that PEO significantly reduces hardening time compared to traditional methods. The microstructural images revealed the transformation of the coarse-grained pearlite–ferrite structure into quenched martensite. Vickers microhardness tests indicated a substantial increase in surface hardness after PEO treatment, compared to the untreated samples. The major advantages of PEO include lower energy consumption, high quenching rates, and the ability to perform localised surface treatments. These benefits contribute to overall cost reduction, making PEO a promising surface hardening method for various industrial applications.