Repair welding is an important remediation process for castings with slight defects. In this paper, the tensile behaviors of the QT400-18 nodular cast iron with different repair welding sizes were experimentally analyzed. Specimens with different diameters of the filler region were prepared by the same welding process. The fracture initiated in the filler region under uniaxial tensile loading. The modulus, strength, and ductility decreased with the weld diameter increase. The postyield hardening phenomenon was not observed in the repaired specimen. The repair region ratio was defined as the proportion of the repair welding area to the cross-sectional area of the structure. The effective modulus of the repaired specimens decreased with the repair region ratio increase, and the relationship between them was fitted by a negative exponential function. The repair welding region was treated as an inclusion in the matrix of castings, and the volume fraction of inclusion was applied to characterize the repair welding size. Based on the theories of Eshelby tensor and Mori–Tanaka equivalent method, a method for estimating macroscopic effective modulus of repair welding castings was established. The theoretical solutions were in good agreement with the experimental results. The method will be helpful in estimating the safe service limit of repair welded castings.