Most artificial socket prostheses are applied to fatigue load; therefore, more failure of socket prostheses occur due to fatigue loading. Then, it was necessary to improve the fatigue characterizations of composite materials used to manufacture the artificial socket prostheses by using hybrid nanomaterials, with different types and amounts. So, this work suggested mixing two nanomaterials types to improve the mechanical and fatigue properties of composite materials. Therefore, the experimental work used to manufacture tensile and fatigue samples of composite with different nanoweight fraction effects, in addition to calculating the mechanical properties and fatigue behavior for its composite. There, strength and modulus of elasticity, in addition to, fatigue strength and life evaluating of composite with different nanomaterials mixing. Also, the numerical technique by using the finite element method is used to calculate fatigue life and strength of composite materials. Also, comparison fatigue results were calculated by experimental work with fatigue results evaluated by numerical technique to give the discrepancy for results evaluation. Hence, the comparison of results showed good agreement for the technique used to evaluate the fatigue behavior of composite materials with the nanoeffect, where, the maximum error did not exceed (11.86%). Finally, the results have shown that the reinforcement by mixing two Nanomaterial types lead to improvement in the mechanical properties and fatigue behavior to more than (35%) and increasing the mechanical properties and fatigue behavior to (10%) more than the increase of properties and fatigue characterizations reinforcement by one Nanomaterial type.