Over the past few decades, coastal and estuarine ecological environments have undergone significant and rapid transformations, driven by a range of factors, with the variability in hydrodynamic conditions being one of the most prominent (Elliott et al., 2019;Statham, 2012;Da et al., 2024). These dynamic forces influence water movement, sediment transport, and nutrient cycling, all of which are critical components affecting the health and stability of these ecosystems (van Vliet et al., 2023;Li et al., 2023). Consequently, understanding and interpreting hydrodynamic processes in coastal and estuarine waters are fundamental to unraveling the mechanisms behind ecological changes. This task requires a multidisciplinary approach, incorporating advanced methodologies such as remote sensing, in-situ observations, and numerical modeling. Each of these methods offers unique insights, from large-scale monitoring to fine-scale process modeling, providing a comprehensive understanding of these complex systems. While the immediate effects of local hydrodynamic conditions are significant, they do not act in isolation. Broader regional or even global events, such as climate change, sea-level rise, and extreme weather patterns, can exacerbate or modify these local processes. Therefore, analyzing hydrodynamic variability across different temporal and spatial scales is crucial to fully grasp how ecological environments evolve in response to various external forces, both immediate and long-term. Gaining a deeper understanding of both the ecological changes and the dynamic mechanisms driving them is essential for developing effective conservation and Frontiers in Marine Science frontiersin.org 01