two longstanding goals in subsurface science are to induce fractures with a desired geometry and to adaptively control the interstitial geometry of existing fractures in response to changing subsurface conditions. Here, we demonstrate that microscopic mineral fabric and structure interact with macroscopic strain fields to generate emergent meso-scale geometries of induced fractures. These geometries define preferential directions of flow. Using additively manufactured rock, we demonstrate that highly conductive flow paths can be formed in tensile fractures by creating corrugated surfaces. Generation, suppression and enhancement of corrugations depend on the relative orientation between mineral fabric and layering. These insights into the role of micro-scale structure on macro-scale flow provide a new method for designing subsurface strategies to maximize potential production or to inhibit flow.The hydraulic integrity of any subsurface site will be affected by the presence of induced or pre-existing fractures that form highly conductive preferential flow paths. Subsurface flow affects the long-term sequestration of anthropogenic waste, determines the production potential of hydrocarbon reservoir and geothermal energy, and maintains the safety of exploitable aquifers. The conductivity of flow paths is controlled by fracture geometry that can be altered over time from physical and chemical processes 1-4 . When a fracture is generated in rock, two rough surfaces define the void space through which fluids will flow. When corrugated surfaces emerge (e.g. Fig. 1), flow parallel to ridges and valleys is mostly unobstructed compared to the more tortuous path for flow orthogonal to the ridges. Thus knowledge of the presence and orientation of corrugated surfaces enables design strategies for maximizing flow potential.This raises the fundamental question in fracture mechanics of what gives rise to corrugated surfaces. The roughness of fracture surfaces is known to be affected by mineralogy (mineral fabric, bond strength, spatial distributions), structural features (layers, micro-cracks, etc.), stress orientation, failure mode, and geochemical interactions that can alter mineral bond strength. However, the inherent heterogeneity in mineral phases and composition among rock samples causes a difficulty in identifying the contributions to surface roughness from each of these rock properties and processes, even when extracted from the same rock mass. The spatial variability in compositional and structural features prevents reproducible measurements of fracture formation, deformation, and other physical and chemical properties.Here, we use additively manufactured gypsum rock to show that mineral fabric orientation governs the isotropy or anisotropy in fracture surface roughness in layered rock which in turn governs the volumetric flow rate through fractures. Through additive manufacturing, the orientation of the mineral fabric and layering can be controlled and used to determine the contributions to fracture surface roughness. Th...