Actinide-based mineral phases occurring in contaminated soils can be solubilized by organic chelators excreted by plants, such as citrate. Herein, the efficiency of citrate towards U and Pu extraction is compared to that of siderophores, whose primary function is the acquisition of iron(III) as an essential nutrient and growth factor for many soil microorganisms. To that end, we selected desferrioxamine B (DFB) as an emblematic bacterial trishydroxamic siderophore and a synthetic analog, abbreviated (L Cy,Pr )H2, of the tetradentate rhodotorulic acid (RA) produced by yeasts. Firstly, the uranyl speciation with both ligands was assessed in the pH range 2-11 by potentiometry and visible absorption spectrophotometry. Equilibrium constants and absorption spectra for three [UO2(DFB)Hh] (h-1)+ (h = 1-3) and five [UO2(L Cy,Pr )lHh] (2+h-2l)+ (-1 h 1 for l = 1 and h = 0-1 for l = 2) solution complexes were determined at 25.0 °C and I = 0.1 M KNO3. Similar studies for the Fe 3+ /(L Cy,Pr ) 2system revealed the formation of five species having [