Combining immersive virtual environment (IVE) with a controlled environment is a potential solution for analyzing human thermal experience during building design. Existing studies in this field have not adequately analyzed scenarios involving stabilized comfortable and uncomfortable temperature conditions using both thermal state votes and physiological responses, or the influence of the seasons. By combining IVE with a climate chamber, called mixed IVE (MIVE) in this study, experiments were conducted to test the hypothesis that participants' virtual experience did not significantly alter their thermal experience compared to their in-situ experience. Response variables were the control temperature distribution, the thermal state vote (at temperature steps 18.3 ºC, 23.8 ºC, and 29.4 ºC), and physiological responses (heart rate and skin temperature). The results show that the first two response variables were not significantly different between the MIVE and in-situ settings (except for one case). Due to the heat development of the head mounted display device, the mean forehead skin temperature in the MIVE experiments was significantly higher than that in the in-situ experiments in most cases. However, such difference in skin 2 temperature did not seem to affect general thermal state votes. In addition, significant skin temperature differences at some locations were also observed between the MIVE and in-situ settings.