A technique is presented for hardening metal products, in particular, the main tools (hammers) and cases of core drilling bits made of steel 30HGSA, using thermomechanical surface treatment according to a separate scheme. The method of combined laser thermomechanical hardening used in the study consists in the use of shot peening followed by laser heat treatment. Its use makes it possible to increase the operational properties of steel products, in particular, their wear and corrosion resistance. Based on the results of theoretical and experimental studies, the paper substantiates the features of dynamic surface plastic deformation for the analysis of impact during shot peening. The advantages of using laser hardening without surface melting are presented. Experimental research methods are proposed for determining the structural-phase composition, structure of the surface layer, hardness and microhardness of the hardened zones of steel 30HGSA. The range of rational modes of impact shot peening and thermal laser treatment has been determined. A device for testing samples for wear resistance has been developed. Methods of testing for wear and corrosion resistance of the surface of samples are proposed for assessing the tribological properties and contact interaction of materials under quasi-static and dynamic loading conditions. It is concluded that rational technological modes of hardening tools made of steel 30HGSA using combined laser thermomechanical treatment allow increasing the depth of the hardened layer by ~1.5 times compared to laser heat treatment. In addition, they provide the microhardness of the surface layer of ~5400 MPa, which is ~2.5 times higher than the microhardness of the base material