Surface fault rupture poses a serious threat to infrastructure in many seismically active regions, but knowledge about the factors which control the likelihood of surface displacement is limited. Current probabilistic frameworks rely only on fault mechanism and moment magnitude to predict the probability of rupture to the ground surface.However, recent work has shown that there may be other parameters which also deserve consideration. For example, statistical analyses have demonstrated that variation in near surface material stiffness may significantly affect the probability of surface rupture over reverse faults. In addition, numerical investigations indicate that the rupture history of native soil deposits also greatly influences the nature of rupture propagation. Given that evidence exists which suggests multiple variables are at work, this study aimed to improve our understanding of which are most critical for predicting surface fault rupture hazard. We sought to generate physical evidence concerning the impact of near surface soil stiffness, soil type, and rupture history on fault rupture propagation. A 3 meter long by 1 meter wide fault box apparatus was constructed to simulate idealized reverse fault rupture oriented at 45° beneath 60cm of soil. Relatively large dimensions were chosen so that shear wave velocity measurements could be taken directly without interference from the walls of the apparatus. Experiments were conducted on loose sand, dense sand, stiff clay, and soft clay.