The complexation of copper(II) to acridine derivatives has been studied by means of electrospray ionization (ESI) mass spectrometry. Under soft conditions of ionization, the ESI mass spectra of methanolic solutions of copper(II) chloride and the acridine ligands show abundant signals of the mononuclear complexes formed from the metal and ligand. Depending on the position of the N‐benzoylamino substituent in the acridinic heterocycle, however, the copper atom involved in the complexation process adopts different oxidation states in the resulting cations. Hence, the metal is reduced to copper(I) in the monocationic complex with the compound substituted in position 2, whereas it keeps its divalent state in the monocation formed with the compound substituted in position 4. As a consequence, the regioisomers lead to monocations with different masses in the ESI spectra. In order to understand this unusual behavior of two isomeric compounds, additional experiments have been performed with quinoline as a model. Copyright © 2008 John Wiley & Sons, Ltd.