The effect of the submicrometer-sized Si 3 N 4 addition on the morphological and structural properties of the ceramic dispersion strengthened (CDS) 316L stainless steels prepared by powder technology has been studied. Two composites were prepared: 316L/0.33 wt. % Si 3 N 4 and 316L/1 wt. % Si 3 N 4 . In order to assure a good dispersion of the ceramic particles in the stainless steel powders and a grain size reduction at the same time, the high efficient attrition milling has been used. Spark plasma sintering (SPS) was used for fast compacting of milled composites. Structural and morphological changes were studied after milling and sintering process. It was found that the amount of Si 3 N 4 addition influenced the efficiency of milling process resulting in powder mixtures with different 316L stainless steel grain size and shapes. In the case of 0.33 wt. % Si 3 N 4 addition, the flat 316L stainless steel grains with submicrometer size in thickness have been resulted after milling compared to 1 wt. % Si 3 N 4 added powder mixtures which consisted of almost globular 316L stainless steel grains with 50-100 μm in diameter. The intensive milling assured an optimal coverage of 316L stainless grains with Si 3 N 4 submicrometer-sized particles in both cases as demonstrated by energy dispersive spectroscopy (EDS) and TEM. On the other hand, the 316L phase has been maintained during and after the milling and sintering. The partial phase transformation of α-Si 3 N 4 to SiO x was observed by EDS.