We present a novel perspective on how connected vehicles can reduce total vehicular delay arising due to the capacity drop phenomenon observed at fixed freeway bottlenecks. We analytically determine spatial regions upstream of the bottleneck, called zones of influence, where a pair of connected vehicles can use an event-triggered control policy to positively influence a measurable traffic macrostate, e.g., the total vehicular delay at bottlenecks. These analytical expressions are also able to determine the boundaries (called null and event horizons) of these spatial extents, outside of which a connected vehicle cannot positively influence the traffic macrostate. These concepts can help ensure that information is disseminated to connected vehicles in only those spatial regions where it can be used to positively impact traffic macrostates. Some scenarios examined in this study indicate that communication between connected vehicles may be required over a span of several kilometers to positively impact traffic flow and mitigate delays arising due to the capacity drop phenomenon.