Dye-dispersing ZnO precursor gel films were prepared on indium tin oxide electrodes from a zinc acetate solution containing eosin Y by dip-coating, steam treatment, and then heating at a low temperature. The electronic interaction between the dye and zinc in the dye-dispersing gel films were investigated by spectroscopic and electrochemical measurements. A photocurrent was observed in the dye-dispersing gel electrodes before the steam treatment. The photocurrent value increased by the steam treatment and heating due to crystallization of the gel and removal of organic impurities. The dye molecules existed between the interlayers of the layered zinc hydroxide coexisting with the ZnO. The photoexcited electron in the dye should be injected into the ZnO conduction band via the layered zinc hydroxide. The value increased with an increase in the dye content even though the ZnO crystallinity decreased.The dye-zinc interaction, i.e., the complex formation and photoinduced electron injection, played an important role in the electron transport and photoelectric conversion.