There are numerous types of surface coatings available to engineers in order to improve the friction and wear resistance of components. In order to successfully use these coatings in practice, it is important to understand the different types of coatings available, and the factors that control their mechanical and tribological properties. This paper will focus on the application of diamond-like carbon (DLC) coatings in tribological applications. Thus far, DLC coatings have found broad industrial application, particularly in optical and electronic areas. In tribological applications, DLC coatings are now being used successfully as coatings for ball bearings where they decrease the friction coefficient between the ball and race, in shaving applications where they increase the life of razor blades in wet shaving applications, and increasingly in automotive applications such as racing engines and standard production vehicles.The structure and mechanical properties of DLC coatings are dependent on the deposition method and the incorporation of additional elements such as nitrogen, hydrogen, silicon and metal dopants. These additional elements control the hardness of the resultant film, the level of residual stress and the tribological properties. As diamond-like carbon films increasingly become adopted for use in industry, it is important to review the factors that control their 2 of 42
DLC Reviewproperties, and thus, the ultimate performance of these coated components in practical tribological applications.