The generation of hydro-mechanical resonance is related to the transition of the boundary layer and the development of vortex shedding. The application effect of suction control in hydrodynamics is equally deserving of consideration as an active control technique in aerodynamics. This study examines how suction control affects the flow field of the NACA0009 blunt trailing edge hydrofoil using the γ transition model. Firstly, the accuracy of the numerical method is checked by performing a three-dimensional hydrofoil numerical simulation. Based on this, three-dimensional hydrofoil suction control research is conducted. According to the results, the suction control increases the velocity gradient in the boundary layer and delays the position of transition. The frequency of vortex shedding in the wake region lowers, and the peak value of velocity fluctuation declines. The hydrofoil hydrodynamic performance may be successfully improved with a proper selection of the suction coefficient via research of the suction coefficient and suction position on the flow field around the hydrofoil. The lift/drag ratio goes up as the suction coefficient goes up. The boundary layer displacement thickness and momentum thickness are at their lowest points, and the velocity fluctuation amplitude in the wake region is at its lowest point as the suction coefficient Cμ = 0.003. When the suction slots are at the leading edge, the momentum loss in the boundary layer is minimal and the velocity fluctuation in the wake zone is negligible.