Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose With the changing landscape of the globalised business world, business-to-business supply chains face a turbulent ocean of disruptions. Such is the effect that supply chains are disrupted to the point of failure, supply is halted and its adverse effect is seen on the consumer. While previous literature has extensively studied risk and resilience through mathematical modelling, this study aims to envision a novel supply chain model that integrates blockchain to support visibility and recovery resilience strategies. Design/methodology/approach The stochastic bi-objective (cost and shortage utility) optimisation-based mixed-integer linear programming model integrates blockchain through a binary variable, which activates at a particular threshold risk-averse level of the decision-maker. Findings Firstly, visibility is improved, as identified by the average reduction of penalties by 36% over the different scenarios. Secondly, the average sum of shortages over different scenarios is consequently reduced by 36% as the recovery of primary suppliers improves. Thirdly, the feeling of shortage unfairness between distributors is significantly reduced by applying blockchain. Fourthly, unreliable direct suppliers resume their supply due to the availability of timely information through blockchain. Lastly, reliance on backup suppliers is reduced as direct suppliers recover conveniently. Research limitations/implications The findings indicate that blockchain can enhance visibility and recovery even under high-impact disruption conditions. Furthermore, the study introduces a unique metric for measuring visibility, i.e. penalty costs (lower penalty costs indicate higher visibility and vice versa). The study also improves upon shortages and recoveries reported in prior literature by 6%. Finally, blockchain application caters to the literature on shortage unfairness by significantly reducing the feeling of shortage unfairness among distributors. Practical implications This study establishes blockchain as a pro-resilience technology. It advocates that organisations focus on investing in blockchain to enhance their visibility and recovery, as it effectively reduces absolute shortages and feelings of shortage unfairness while improving recovery and visibility. Originality/value To the best of the authors’ knowledge, this is a unique supply chain model study that integrates a technology such as blockchain directly as a binary variable in the model constraint equations while also focusing on resilience strategies, costs, risk aversion and shortage unfairness.
Purpose With the changing landscape of the globalised business world, business-to-business supply chains face a turbulent ocean of disruptions. Such is the effect that supply chains are disrupted to the point of failure, supply is halted and its adverse effect is seen on the consumer. While previous literature has extensively studied risk and resilience through mathematical modelling, this study aims to envision a novel supply chain model that integrates blockchain to support visibility and recovery resilience strategies. Design/methodology/approach The stochastic bi-objective (cost and shortage utility) optimisation-based mixed-integer linear programming model integrates blockchain through a binary variable, which activates at a particular threshold risk-averse level of the decision-maker. Findings Firstly, visibility is improved, as identified by the average reduction of penalties by 36% over the different scenarios. Secondly, the average sum of shortages over different scenarios is consequently reduced by 36% as the recovery of primary suppliers improves. Thirdly, the feeling of shortage unfairness between distributors is significantly reduced by applying blockchain. Fourthly, unreliable direct suppliers resume their supply due to the availability of timely information through blockchain. Lastly, reliance on backup suppliers is reduced as direct suppliers recover conveniently. Research limitations/implications The findings indicate that blockchain can enhance visibility and recovery even under high-impact disruption conditions. Furthermore, the study introduces a unique metric for measuring visibility, i.e. penalty costs (lower penalty costs indicate higher visibility and vice versa). The study also improves upon shortages and recoveries reported in prior literature by 6%. Finally, blockchain application caters to the literature on shortage unfairness by significantly reducing the feeling of shortage unfairness among distributors. Practical implications This study establishes blockchain as a pro-resilience technology. It advocates that organisations focus on investing in blockchain to enhance their visibility and recovery, as it effectively reduces absolute shortages and feelings of shortage unfairness while improving recovery and visibility. Originality/value To the best of the authors’ knowledge, this is a unique supply chain model study that integrates a technology such as blockchain directly as a binary variable in the model constraint equations while also focusing on resilience strategies, costs, risk aversion and shortage unfairness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.