Barnacle-type roughness can be considered as a hybrid-form of roughness that combines some of the topographical features of traditional regular rough surfaces composed of discrete roughness elements of uniform size and shape, and of irregular rough surfaces that exhibit features with a wide distribution of sizes and shapes, covering the surface with a random areal distribution. In this study, the influence of barnacle-type rough surfaces with increasing coverage on wall-bounded turbulence is investigated using direct numerical simulations of turbulent channel flow. The barnacle-type rough surfaces were generated with an algorithm that mimics the settlement behaviour of barnacles, and the set of seven different surfaces describe the evolution of barnacle fouling with increasing coverage ranging from a lightly fouled surface with small isolated barnacle clusters (10% coverage) to a surface that is fully covered by barnacles (85% coverage). The roughness function recovers the expected trend with frontal solidity, attaining its maximum at a frontal solidity of approximately 0.2. Mean flow, Reynolds stress, and dispersive stresses show signatures of the clustering of roughness features, i.e., the barnacle colonies, at low coverage. This is most distinct for the streamwise Reynolds stresses where a double peak is observed at the lowest coverage; the inner peak can be interpreted as a partial recovery of smooth-wall behaviour over the large connected unfouled sections of this surface. The flow over the rough surfaces is further investigated by a topographical characterisation of the blanketing layer, i.e., the effective shape of the rough surface 'perceived' by the outer flow. A linear relationship between the roughness function and the effective slope of the blanketing layer is observed.