The aim of the present work is to investigate the static and dynamic nonlinear behaviour of a cable-stayed tower. A continuous structural model of a slender tower is discretized by the finite element method. First the buckling and post-buckling behaviour of the tower under axial load is explored, in order to understand the influence of the cable stiffness and lateral restrain on the load carrying capacity of the tower. Then, the linear vibration modes and frequencies are obtained. Due to the inherent symmetries of the tower, coincident buckling loads and vibration frequencies are obtained. This may lead to interactive buckling and internal resonance, increasing the effect of the geometric nonlinearities on the response. The results show that the tower exhibits a highly nonlinear response, which must be considered with care in the design stage.