Abstract. The Late Paleozoic Ice Age (LPIA; ca. 360–260 million years ago) was one of the most significant glacial events in Earth history that records cycles of ice advance and retreat in southern high-latitude Gondwana and provides a deep-time perspective for climate-glaciation coevolution. However, climate records from the LIPA are poorly understood in low latitudes, particularly in the North China Plate (NCP) on the eastern Palaeo-Tethys. We address this through a detailed mineralogical study of the marine-continental sedimentary succession in the Yuzhou Coalfield from the southern NCP in which we apply Zircon U-Pb dating, biostratigraphy, and high-resolution clay mineral composition to reconstruct latest Carboniferous to early Permian chronostratigraphy and climate change. The Benxi, Taiyuan, and Shanxi formations in the study area are assigned to the Gzhelian, Asselian-Artinskian, and Kungurian-Roadian stages respectively and the Carboniferous Permian lithostratigraphy across NCP recognized as widely diachronous. Detrital micromorphology of kaolinite under scanning electron microscopy and illite crystallization indicates kaolinite contents to be a robust proxy for palaeoclimate reconstruction. Kaolinite data show alternating warm-humid and cool-humid climate conditions that are roughly consistent with the calibrated glacial-interglacial successions recognized in high-latitude eastern Australia, including the glaciations P1 (Asselian-early Sakmarian) and P2 (late Sakmarian-early Artinskian), as well as the climatic transition to glaciation P3 (Roadian). Our results indicate a comparatively cool-humid and warm-humid climate mode in low-latitude NCP during glacial and interglacial periods, and this is a significant step toward connecting climate change in low-latitudes to high-latitude glaciation during the LPIA.