A novel transition metal chalcohalide [Cr7S8(en)8Cl2]Cl3 ⋅ 2H2O, with [Cr7S8]5+ dicubane cationic clusters, has been synthesized by a low temperature solvothermal method, using dimethyl sulfoxide (DMSO) and ethylenediamine (en) solvents. Ethylenediamine ligand exhibits bi‐ and monodentate coordination modes; in the latter case ethylenediamine coordinates to Cr atoms of adjacent clusters, giving rise to a 2D polymeric structure. Although magnetic susceptibility shows no magnetic ordering down to 1.8 K, a highly negative Weiss constant, θ=−224(2) K, obtained from Curie‐Weiss fit of inverse susceptibility, suggests strong antiferromagnetic (AFM) interactions between S=3/2 Cr(III) centers. Due to the complexity of the system with (2S+1)7=16384 microstates from seven Cr3+ centers, a simplified model with only two exchange constants was used for simulations. Density‐functional theory (DFT) calculations yielded the two exchange constants to be J1=−21.4 cm−1 and J2=−30.2 cm−1, confirming competing AFM coupling between the shared Cr3+ center and the peripheral Cr3+ ions of the dicubane cluster. The best simulation of the experimental data was obtained with J1=−20.0 cm−1 and J2=−21.0 cm−1, in agreement with the slightly stronger AFM exchange within the triangles of the peripheral Cr3+ ions as compared to the AFM exchange between the central and peripheral Cr3+ ions. This compound is proposed as a synthon towards magnetically frustrated systems assembled by linking dicubane transition metal‐chalcogenide clusters into polymeric networks.