The fundamental idea underlying the research presented in this paper was the desire to use less magnetically charged areas of the general construction of induction machines by increasing the active working surface by interposing a new internal stator armature. This results in a new air gap and foreshadows the advantage of increasing the torques developed by the motor considered, compared to the equivalent standard motor, at the same volume of iron. The following research-validation methods were followed: theoretical studies (analytical simulation and FEM), an experimental model (prototype), and testing on the experimental platform. We recall obtaining solid conclusions on the technological construction, functional and energy characteristics, as well as superior performances of over 50% regarding electromagnetic torques compared to the equivalent classic version. The prototype of this type of machine was surprising due to the ease with which the rotor can be rotated, highlighting the reduced inertia. In conclusion, concerning the problem addressed and the objectives pursued, the research had, in essence, an applied and experimental nature. The recent development of permanent-magnet synchronous motor constructions has led to the concept of creating such motors in the constructive configuration specified in the paper (two stators and two radial air gaps).