The escalating impacts of climate change have led to significant challenges in maintaining road infrastructure, particularly in tropical climates. Abnormal weather patterns, including increased precipitation and temperature fluctuations, contribute to the accelerated deterioration of asphalt pavements, resulting in cracks, plastic deformation, and potholes. This study aims to evaluate the durability of a novel pellet-type stripping prevention material incorporating slaked lime and epoxy resin for pothole restoration in tropical climates. The modified asphalt mixtures were subjected to a series of laboratory tests, including the Tensile Strength Ratio (TSR) test, Indirect Tension Strength (ITS) test, Hamburg Wheel Tracking (HWT) test, Cantabro test, and Dynamic Modulus test, to assess their moisture resistance, rutting resistance, abrasion resistance, and viscoelastic properties. Quantitative results demonstrated significant improvements in the modified mixture’s performance. The TSR test showed a 6.67% improvement in moisture resistance after 10 drying–wetting cycles compared to the control mixture. The HWT test indicated a 10.16% reduction in rut depth under standard conditions and a 27.27% improvement under double load conditions. The Cantabro test revealed a 44.29% reduction in mass loss, highlighting enhanced abrasion resistance. Additionally, the Dynamic Modulus test results showed better stress absorption and reduced likelihood of cracking, with the modified mixture demonstrating superior flexibility and stiffness under varying temperatures and loading frequencies. These findings suggest that the incorporation of slaked lime and epoxy resin significantly enhances the durability and performance of asphalt mixtures for pothole repair, making them a viable solution for sustainable road maintenance in tropical climates.