In this paper, we propose a surface integrity technique referred to as pulse laser grinding (PLG). This method is a combination of laser ablation and averaging processes, such as grinding, and has two characteristic features. The first feature is that the irradiation area consists of a long-focus lens and a pulse laser with a Gaussian profile, and this method has a laser irradiation area equivalent to that of the grinding wheel. However, owing to the difference in the removal process of PLG and that of conventional grinding, the surface roughness after processing is expected to be different. The second feature is that the workpiece is placed at an approximately parallel angle between the laser axis and the work surface to undergo laser ablation on the surface. The characteristic piece placement restrains laser-specific problems such as debris and redeposition. This study targets sintered tungsten carbide (WC-Co), for which it is particularly difficult to form low-roughness surfaces. Binder removal followed by WC grain detachment caused by conventional grinding contributes to the increase in roughness and deterioration of corner sharpness. The experimental results of PLG with a sufficiently averaged surface of a WC-Co tool confirmed that the parallel roughness reached an arithmetical mean roughness (Ra) of 0.025 μm, and the perpendicular roughness reached Ra below 0.006 μm, in agreement with the aforementioned considerations.