2001
DOI: 10.1016/s0029-5493(00)00317-4
|View full text |Cite
|
Sign up to set email alerts
|

Influence of the distribution of noncondensibles on passive containment condenser performance in PANDA

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2010
2010
2020
2020

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(2 citation statements)
references
References 2 publications
0
2
0
Order By: Relevance
“…The steam generated in the RPV is transferred into the DW and from there to the PCC where a part condenses and returns into the RPV and a part is vented to the WW pool where it condenses. During this initial phase, the air present in the DW and PCC tubes is vented into the wetwell (WW) [15], so all the active tube length (red in Figure 3) is available for heat transfer, leading to the steam condensation. As the transient continue, further and the decay heat decreases, the PCCs have an overcapacity and the pressure in the DW decreases below the WW pressure.…”
Section: Control Systemmentioning
confidence: 99%
“…The steam generated in the RPV is transferred into the DW and from there to the PCC where a part condenses and returns into the RPV and a part is vented to the WW pool where it condenses. During this initial phase, the air present in the DW and PCC tubes is vented into the wetwell (WW) [15], so all the active tube length (red in Figure 3) is available for heat transfer, leading to the steam condensation. As the transient continue, further and the decay heat decreases, the PCCs have an overcapacity and the pressure in the DW decreases below the WW pressure.…”
Section: Control Systemmentioning
confidence: 99%
“…Pressure time behaviour defines thus the response of the whole system to the specific transient. As far as condensation issues are concerned, PANDA facility was very useful for investigating the degradation of HTC (and then the influence on the effective condensing length) in presence of non-condensable gases [34], both heavier than steam, initially filling the containment compartments (nitrogen or air), and lighter than steam, released later in the course of the transient from the reactor core (hydrogen, simulated by helium). The provided tests permitted moreover to extend the database available for containment analysis code qualification.…”
Section: Short Review On Experimental Facilitiesmentioning
confidence: 99%