Static indentation and dynamic indentation are reviewed, with a focus on extraction of material properties of isotropic strain-hardening polycrystalline metals that may be rate- and temperature-sensitive. Static indentation is reviewed first, followed by dynamic indentation, since the former is regarded as a specialization of the latter with inertia, rate dependence, and adiabatic heating excluded. Extending concepts from the literature review, a treatment of dynamic indentation using dimensional analysis is forwarded, and a general framework for extraction of material property information (i.e., constitutive model parameters) from instrumented dynamic spherical indentation experiments is set forth. In an example application of the methodology, experimental data obtained from instrumented spherical indentation in a miniature Kolsky bar apparatus are evaluated via dimensional analysis. The substrate material is aluminum alloy Al 6061-T6. Several definitions of indentation strain proposed for static indentation are assessed for dynamic indentation, as are indentation strain rates. While the fidelity of the experimental method and inertial effects could inhibit extraction of elastic properties, extraction of certain plastic constitutive properties may be feasible. Current data are insufficient to enable determination of a complete and unique set of all physical properties. Motivated by the present review and analysis, new experiments and simulations are proposed that would identify influences of material properties, facilitating their extraction from data.