The electrocarboxylation of benzyl halides to the corresponding carboxylic acids through homogeneous charge-transfer catalysis was investigated both theoretically and experimentally to determine the influence of the operative parameters on the yield of the process and on the catalyst consumption. Theoretical considerations, based on fast kinetics of redox catalysis, were confirmed by the electrocarboxylation of 1-phenyl-1-chloroethane catalyzed by 1,3-benzenedicarboxylic acid dimethyl ester performed at a carbon cathode under different operative conditions. We obtained high yields of the target carboxylic acid and experienced a low catalyst consumption by operating with optimized [RX]bulk/[CO2]bulk and [RX]bulk/[catalyst] ratios.