Background: Stroke is the major cause of adult neurocognitive disorders (NCDs), and presents a significant burden on both of the families and society. To improve the cerebral injury, we generated a blood-brain barrier penetrating peptide TAT-LBD-Ngn2, in which Ngn2 (Neurogenin2) is a classical preneural gene that enhances neurogenesis, and neural precursor cells survival and differentiation. We previously demonstrated that it has a short-term protective effect against cerebral ischemia-reperfusion injury. However, it is uncertain if TAT-LBD-Ngn2 could promote neurogenesis to exhibit long-term therapeutic impact.
Methods and results:In present study, TAT-LBD-Ngn2 was administered for 14 or 28 days following bilateral common carotid arteries occlusion (BCCAO). After confirming that TAT-LBD-Ngn2 could cross the brain blood barrier and aggregate in the hippocampus, we conducted open field test, Morris water maze and contextual fear conditioning to examine the long-term effect of TAT-LBD-Ngn2 on cognition. We discovered that TAT-LBD-Ngn2 significantly improved the spatial and contextual learning and memory on both days 14 and 28 after BCCAO, while TAT-LBD-Ngn2 exhibited anxiolytic effect only on day 14, but had no effect on locomotion. Using western blot and immunofluorescence, TAT-LBD-Ngn2 was also shown to promote neurogenesis, as evidenced by increased BrdU + and DCX + neurons in dentate gyrus. Meanwhile, TAT-LBD-Ngn2 elevated the expression of brain derived neurotrophic factor rather than nerve growth factor compared to the control group.
Conclusions:Our findings revealed that TAT-LBD-Ngn2 could dramatically promote learning and memory in long term by facilitating neurogenesis in the hippocampus after global cerebral ischemia, indicating that TAT-LBD-Ngn2 may be an appealing candidate for treating poststroke NCD.