Many approaches are used to modify the surface topography of implant materials. Some produce unordered surfaces using, for example, classical implant surface treatments, whereas others produce ordered surfaces by micro-and nanopatterning techniques. Surface topographies can be characterised by several methods that can acquire two-dimensional profiles or threedimensional measurements and calculate different roughness parameters. The importance of using systematically several roughness parameters for correlation with biological response, and of consider these parameters at different scales will be demonstrated. Furthermore, it will be described, from a general point of view, how cells are able to identify and respond to surface topography. The role of membrane receptors, cytoskeleton, filopods and intracellular signal transduction in the response to topography will be considered and discussed. A critical review of more than 300 papers provides the basis for illustrating how mammalian cells respond to surface topography and how their rugophilia, the increased cell response to rougher surfaces, is a function of cell phenotype. For the first time, the rugophilia of cells from different tissue origins is compared in a synthetic table.