2011
DOI: 10.12693/aphyspola.120.256
|View full text |Cite
|
Sign up to set email alerts
|

Influence of the Nanostructures on the Surface and Bulk Physical Properties of Materials

Abstract: Fullerenes, nanotubes, quantum dots are considered as effective sensitizers to modify both the optical, nonlinear optical features, dynamic and polarization characteristics, as well as mechanical and spectral properties of the organic and inorganic materials. The correlation between photorefractivity and photoconductivity was supported and the relation between charge carrier mobility of pure conjugated structures and nanoobjects-doped ones has been revealed. An increase of transmission of nanostructured polari… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2011
2011
2013
2013

Publication Types

Select...
1
1
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 14 publications
0
1
0
Order By: Relevance
“…4. Analyzing the Fig.4, one can say that it is necessary to take into account that the charge transfer between matrix organic molecule donor fragment and nanasensitizers can be organ-ized due to their high electron affinity energy (for example, electron affinity energy is close to 2 eV for shungites [9], to 2.65 eV for fullerenes [5,8] and to 3.8-4.2 eV for quantum dots [10]) that is more than the ones for intramolecular acceptor fragments (for example, electron affinity energy of COANP acceptor fragment is close to 0.54 eV [11] and to 1.14-1.4 eV for polyimide one [12]). Regarding graphenes it is necessary to take into account the high surface energy and planarity of the graphenes plane which can provoke to organize the charge transfer complex (CTC) with good advantage too.…”
Section: Resultsmentioning
confidence: 99%
“…4. Analyzing the Fig.4, one can say that it is necessary to take into account that the charge transfer between matrix organic molecule donor fragment and nanasensitizers can be organ-ized due to their high electron affinity energy (for example, electron affinity energy is close to 2 eV for shungites [9], to 2.65 eV for fullerenes [5,8] and to 3.8-4.2 eV for quantum dots [10]) that is more than the ones for intramolecular acceptor fragments (for example, electron affinity energy of COANP acceptor fragment is close to 0.54 eV [11] and to 1.14-1.4 eV for polyimide one [12]). Regarding graphenes it is necessary to take into account the high surface energy and planarity of the graphenes plane which can provoke to organize the charge transfer complex (CTC) with good advantage too.…”
Section: Resultsmentioning
confidence: 99%