We report a study of iron doped GaN layers grown on sapphire and SiC by Metal Organic Chemical Vapor Deposition (MOCVD) using ferrocene as the Fe precursor. The influence of iron doping on the electrical, structural and morphological properties of the GaN layers was studied. A resistivity of 6x10 3 Ωcm and higher was achieved in contrast to 3 Ωcm for the undoped film. Defect selective etching showed that Fe doping increases the threading dislocation (TD) density which might be responsible for the increase in resistivity. A turn-on, turn-off effect is described and a memory effect which is responsible for a decrease of the surface quality of the samples. In situ annealing of the susceptor and the use of a clean liner after each growth run helps to reduce this effect and maintain the good quality of GaN layers.