Abstract:This study aims to present the interest of using a design of experiments (DOE) approach for assessing, understanding and improving the hydride vapor phase epitaxy (HVPE) process, a particular class of chemical vapor deposition (CVD) process. The case of the HVPE epitaxial growth of AlN on (0001) sapphire will illustrate this approach. The study proposes the assessment of the influence of 15 process parameters on the quality or desired properties of the grown layers measured by 9 responses. The general method used is a screening design with the Hadamard matrix of order 16. For the first time in the growth of AlN by CVD, a reliable estimation of errors is proposed on the measured responses. This study demonstrates that uncontrolled release of condensed species from the cold wall is the main drawback of this process, explaining many properties of the grown layers that could be mistakenly attributed to other phenomena without the use of a DOE. It appears also that the size of nucleation islands, and its corollary, the stress state of the layer at room temperature, are key points. They are strongly correlated to the crystal quality. Due to the intrinsic limitations of the screening design, the complete optimization of responses cannot be proposed but general guidelines for hydride (or halogen) vapor phase epitaxy (HVPE) experimentations, in particular with cold wall apparatus, are given.