Surface modification of a lubricated bearing, such as hydrophobic coating inducing slip situation and texturing, is proved to enhance hydrodynamic performance. As widely known, in textured surface lubricant inertia and cavitation can significantly affect the hydrodynamic pressure profile. However, a brief literature review indicates that studies related to the correlation between cavitation and inertia, especially in the presence of slip, are considerably limited. The present study examines the effect of inertia on cavitation phenomena by considering the slip boundary using two approaches, namely computational fluid dynamics based on full Navier-Stokes equations and analytical lubrication equation based on the Reynolds equation. The modified Reynolds equation with slip concept is used with respect to the slip effect applied on the surface of the bearing. The results indicate that the inertia as well as the slip condition significantly affects the cavitation area. It is also highlighted that the cavitation area reduces by increasing the inertia effect, and it becomes smaller when the slip is introduced.