This paper presents a comparative analysis of the luminescence and absorption of glasses with molecular clusters of silver and selenium and nanocrystals of copper chloride and cadmium sulfide from the viewpoint of spectral down-conversion of short-wavelength solar radiation into the spectral interval of the maximum efficiency of the photoelectric converter of a solar cell. It is shown that UV and violet radiation can be efficiently converted into the 450-700-nm spectral region by appropriately choosing the luminescence centers in glass, and this promises to reduce the number of stages in a solar cell.