At present, research on the influence of friction heat on the wear resistance of laser cladding layers is still lacking, and there is even less research on the temperature of laser cladding layers under different loads by a finite element program generator (FEPG). After a symmetrical laser cladding path, the wear performance of the moving jaw will change. The study of the temperature change of the moving jaw material in friction provides a theoretical basis for the surface modification of the moving jaw. The model of the column ring is built in a finite element program generator (FEPG). When the inner part of the column is WDB620 (material inside the cylinder) and the outer part is ceramic powder (moving jaw surface material), the relationship between the temperature and time of the contact surface is analyzed under the load between 100 and 600 N. At the same time, the stable temperature, wear amount, effective hardening layer thickness, strain thickness, and iron oxide content corresponding to different loads in a finite element program generator (FEPG) were analyzed. The results showed that when the load is 300 N, the temperature error between the finite element program generator (FEPG) and the movable jaw material is the largest, and the relative error is 4.3%. When the load increases, the stable temperature of the moving jaw plate increases after the symmetrical laser cladding path, and the wear amount first decreases and then increases. The minimum wear amount appears at a load of 400 N and a temperature of 340 °C; the strain thickness of the sample material increases gradually, and the effective hardening layer thickness increases. However, when the load reaches 400 N, the thickness of the effective hardening layer changes little; the content of Fe decreases gradually, and the content of FeO and Fe2O3 increases. The increase of the moving jaw increases in turn the temperature of the laser cladding layer of the test jaw material, which intensifies the oxidation reaction of the ceramic powder of the laser cladding layer.