A method for surface treatment of carbon fabric with nano-particles of rare earth salt (ytterbium fluoride-YbF 3 ) was tried first time in the authors' laboratory to enhance the fiber-matrix interface, and has been reported here. In this article authors have reported on the performance evaluation of composites developed from the four fabrics treated with various doses viz. 0, 0.1, 0.3, and 0.5 wt% of YbF 3 . The abrasive wear performance of these composites was evaluated by abrading the composites against silicon carbide abrasive paper under varying loads. The treated fabric composites exhibited lower coefficient of friction and higher wear resistance as compared with untreated fabric composite. A linear correlation between ILSS (interlaminar shear strength) and wear resistance was observed. Both were the highest for 0.3% dosing of fabric. Since it was also desirable to compare the efficiency of this novel method of treatment of carbon fibers with conventional one, a few results of composites with plasma-treated carbon fabric were compared with the nano-particle-treated fabric composites. It was concluded that the latest method improved the abrasive wear resistance of composites almost two times more than the plasma-treated composites. Fiber-matrix interface was strengthened because of the treatment as observed from SEM studies, ILSS, and matrix pick-up studies. Increased roughness of fiber surface was observed in topographical analysis by SEM. Effect of treatment on fiber was also observed by adhesion test and fiber tow tension test. SEM studies of worn surfaces were performed to understand wear mechanisms.