This article discusses the thermal and mechanical exposure of the starting cage of a double-cage induction motor rotor during start-up. Damage to the starting cage is the most common cause of failure of a double-cage winding during long start-ups. It has been indicated that the end region of the double-cage winding is a key area in the search for a more damage-resistant solution. Among the available studies on improving the mechanical strength of double-cage windings, which typically focuses on improving the cooling system, modifying the shape of the slots, or altering the bar material, a new concept of improving the mechanical strength through the modification of the structure of the end region has appeared. This is achieved by applying sleeves onto the ends of the starting cage bars, which helps to reduce the temperature of the connection between the starting bars and the end rings. A simulation of the temperature field of a double-cage induction motor with this new design is performed and discussed in this paper. It has been confirmed that the new design solution effectively improves the mechanical strength of the starting cage, making it less prone to damage caused by thermal stresses.